

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	charlatan 0.4.6 documentation

Welcome to Charlatan’s documentation!

Charlatan is a library that lets you efficiently manage and install
fixtures.

Its features include:

	Straightforward YAML syntax to define fixtures.

	Rich fixture definition functionalities, including inheritance and
relationships (fixtures factory).

	ORM-agnostic. Tested with sqlalchemy, schematics, etc.

	Flexible thanks to Hooks or Builders.

Charlatan is a library that you can use in your tests to create database
fixtures. Its aim is to provide a pragmatic interface that focuses on making it
simple to define and install fixtures for your tests.

Charlatan supports Python 2 (only tested with 2.7) and 3 (tested with 3.3).

Why Charlatan? Since “charlatan” used to define “an itinerant seller of
supposed remedies”, we thought it would be a good name for a library providing
fixtures for tests. Credit for the name goes to Zack Heller.

Contents

	Installation

	Quickstart
	A simple example

	Factory features

	Using charlatan in test cases

	Using fixtures

	File format
	Defining a fixture

	Inheritance

	Having dictionaries as fixtures

	Getting an already existing fixture from the database

	Dependencies

	Post creation

	Linking to other objects

	Collections of Fixtures

	Loading Fixtures from Multiple Files

	Datetime and timestamps

	Unicode Strings

	Database fixtures
	SQLAlchemy

	Hooks

	Builders
	Example

	API

	API Reference
	FixturesManager

	FixturesManagerMixin

	Fixture

	Utils

	Contributing

	Changelog for Charlatan
	0.4.6 (2015-09-22)

	0.4.5 (2015-05-29)

	0.4.4 (2015-05-28)

	0.4.3 (2015-05-26)

	0.4.2 (2015-05-19)

	0.4.1 (2015-02-26)

	0.4.0 (2015-02-18)

	0.3.12 (2015-01-14)

	0.3.11 (2015-01-06)

	0.3.10 (2014-12-31)

	0.3.9 (2014-11-13)

	0.3.8 (2014-08-19)

	0.3.7 (2014-07-07)

	0.3.6 (2014-06-02)

	0.3.5 (2014-06-02)

	0.3.4 (2014-01-21)

	0.3.3 (2014-01-18)

	0.3.2 (2014-01-16)

	0.3.1 (2014-01-10)

	0.2.9 (2013-11-20)

	0.2.8 (2013-11-12)

	0.2.7 (2013-10-24)

	0.2.6 (2013-09-06)

	0.2.5 (2013-09-06)

	0.2.4 (2013-08-08)

	0.2.3 (2013-06-28)

	0.1.2 (2013-04-01)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	charlatan 0.4.6 documentation

Installation

From PyPI:

$ pip install charlatan

From sources:

$ git clone https://github.com/uber/charlatan.git
$ python setup.py install

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	charlatan 0.4.6 documentation

Quickstart

A simple example

Let’s say we have the following model:

class Toaster(object):

 def __init__(self, color, slots=2, content=None):
 self.color = color
 self.slots = slots
 self.content = content

 def __repr__(self):
 return "<Toaster '%s'>" % self.color

class User(object):

 def __init__(self, toasters):
 self.toasters = toasters

Let’s define a very simple fixtures YAML file:

toaster: # The fixture's name
 fields: # The fixture's content
 color: red
 slots: 5
 content: !rel toasts # You can reference other fixtures
 model: charlatan.tests.fixtures.simple_models:Toaster

toaster_green:
 # Charlatan also supports inheritance
 inherit_from: toaster
 fields:
 color: green

toasts:
 # No model is defined, so it defaults to what `fields` actually is, i.e.
 # in our case, a list.
 fields:
 - "Toast 1"
 - "Toast 2"

In this example:

	toaster and toasts are the fixture keys.

	fields is provided as argument when instantiating the class:
Toaster(**fields).

	model is the path to the model that we defined.

	!rel lets you create relationships by pointing to another fixture key.

You first need to load a fixtures file (do it once for the whole test suite)
with charlatan.FixturesManager.load():

>>> import charlatan
>>> fixtures_manager = charlatan.FixturesManager()
>>> fixtures_manager.load("./docs/examples/simple_fixtures.yaml",
... models_package="toaster.models")
>>> toaster = fixtures_manager.install_fixture("toaster")
>>> toaster.color
'red'
>>> toaster.slots
5
>>> toaster.content
['Toast 1', 'Toast 2']

Voila!

Factory features

Charlatan provides you with factory features. In particular, you can override
a fixture’s defined attributes:

>>> toaster = fixtures_manager.install_fixture("toaster",
... overrides={"color": "blue"})
>>> toaster.color
'blue'

You can also use inheritance:

>>> toaster = fixtures_manager.install_fixture("toaster_green")
>>> toaster.color
'green'

Using charlatan in test cases

Charlatan works best when used with unittest.TestCase. Your test
class needs to inherit from charlatan.FixturesManagerMixin.

Charlatan uses an internal cache to store fixtures instance (in particular to
create relationships). If you are resetting your database after each tests
(using transactions or by manually truncating all tables), you need to clean
the cache in TestCase.setUp(), otherwise Charlatan will try
accessing objects that are not anymore in the sqlalchemy session.

import unittest

import charlatan

fixtures_manager = charlatan.FixturesManager()
fixtures_manager.load("./docs/examples/simple_fixtures.yaml")

class TestToaster(unittest.TestCase, charlatan.FixturesManagerMixin):

 def setUp(self):
 # Attach the fixtures manager to the instance
 self.fixtures_manager = fixtures_manager
 # Cleanup the cache
 self.init_fixtures()

 def test_example(self):
 """Verify that we can get fixtures."""
 toaster = self.install_fixture("toaster")
 self.assertEqual(toaster.color, "red")
 self.assertEqual(toaster.slots, 5)
 self.assertEqual(toaster.content, ['Toast 1', 'Toast 2'])

Using fixtures

There are multiple ways to require and use fixtures. When you install a fixture
using the charlatan.FixturesManagerMixin, it gets attached to the
instance and can be accessed as an instance attribute (e.g. self.toaster).

For each tests, in setUp and tearDown

class MyTest(FixturesManagerMixin):

 def setUp(self):
 # This will create self.toaster and self.brioche
 self.install_fixtures(("toaster", "brioche"))

 def test_toaster(self):
 """Verify that a toaster toasts."""
 self.toaster.toast(self.brioche)

For a single test

class MyTest(FixturesMixin):

 def test_toaster(self):
 self.install_fixture("toaster")

With pytest

It’s extremely easy to use charlatan with pytest. There are multiple ways to
achieve nice readability, here’s one possibility.

In conftest.py:

import pytest

@pytest.fixture
def get_fixture(request):
 request.addfinalizer(fixtures_manager.clean_cache)
 return fixtures_manager.get_fixture

In your test file:

def test_toaster(get_fixture):
 """Verify that a toaster toasts."""
 toaster = get_fixture('toaster')
 toast = get_fixture('toast')
 ...

Getting a fixture without saving it

If you want to have complete control over the fixture, you can also get it
without saving it nor attaching it to the test class:

class MyTest(FixturesManagerMixin):

 def test_toaster(self):
 self.toaster = self.get_fixture("toaster")
 self.toaster.brand = "Flying"
 self.toaster.save()

What happens when you install a fixture

Here’s the default process (you can modify part or all of it using Hooks
or Builders):

	The fixture is instantiated: Model(**fields).

	If there’s any post creation hook, they are run (see Post creation
for more information).

	The fixture is then saved. If it’s a sqlalchemy model, charlatan will detect
it, add it to the session and commit it (db_session.add(instance); db_session.commit()).
If it’s not a sqlalchemy model, charlatan will try to call a save method
on the instance. If there’s no such method, charlatan will do nothing.

Hooks are also supported.

Uninstalling fixtures

Because charlatan is not coupled with the persistence layer, it does not have
strong opinions about resetting the world after a test runs. There’s multiple
ways to handle test tear down:

	Wrap test inside a transaction (if you’re using sqlalchemy, its documentation
has a good
explanation [http://docs.sqlalchemy.org/en/rel_0_9/orm/session_transaction.html#joining-a-session-into-an-external-transaction-such-as-for-test-suites]
about how to achieve that).

	Drop and recreate the database (not really efficient).

	Install and uninstall fixtures explicitly (you have to keep track of them
though, if you forget to uninstall one fixture it will leak in the other
tests). See
charlatan.FixturesManager.uninstall_fixture().

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	charlatan 0.4.6 documentation

File format

charlatan only supports YAML at time of writing.

Fixtures are defined in a YAML file. Here is its general structure:

toaster:
 fields:
 brand: Flying
 number_of_toasts: 2
 toasts: [!rel toast1, !rel toast2]
 bought: !now -1y
 model: Toaster

toaster_already_in_db:
 id: 10
 model: Toaster

toast1:
 fields:
 bread: brioche
 model: .toast:Toast

toast2:
 fields:
 bread: campagne
 model: .toast:Toast

user:
 fields:
 name: Michel Audiard
 toaster: !rel toaster
 model: toaster.models.user:User
 post_creation:
 has_used_toaster: true

In this example:

	toaster, toast1 and toast2 are the fixture keys.

	model is where to get the model. Both relative and absolute addressing are supported

	fields are provided as argument when instantiating the class:
Toaster(**fields).

	!rel lets you create relationships by pointing to another fixture key.

	!now lets you enter timestamps. It supports basic operations
(adding/subtracting days, months, years). It is evaluated when the fixture
is instantiated.

	!epoch_now generates epoch timestamps and supports the same operations as
!now.

Note

Inside fields, !now is supported only as a first level list item,
or as a dictionary value.

Defining a fixture

A fixture has an identifier (in the example above, toaster is one of
the fixture identifiers), as well as the following configuration:

	fields: a dictionary for which keys are attribute, and values are their
values

	model gives information about how to retrieve the model

	post_creation lets you have some attribute values be assigned after
instantiation.

Inheritance

Fixtures can inherit from other fixtures.

first:
 fields:
 foo: bar

Everything is inherited from first.
second:
 inherit_from: first

You can add fields without removing existing ones
third:
 inherit_from: first
 fields:
 # foo: bar is implied by inheritance
 toaster: toasted

You can also overwrite the model.
fourth:
 inherit_from: first
 model: collections:Counter

You can also overwrite both.
fifth:
 inherit_from: second
 fields:
 toaster: toasted
 model: collections:Counter

>>> import pprint
>>> from charlatan import FixturesManager
>>> manager = FixturesManager()
>>> manager.load("docs/examples/fixtures_inheritance.yaml")
>>> manager.get_fixture("first")
{'foo': 'bar'}
>>> manager.get_fixture("second")
{'foo': 'bar'}
>>> pprint.pprint(manager.get_fixture("third"))
{'foo': 'bar', 'toaster': 'toasted'}
>>> fourth = manager.get_fixture("fourth")
>>> fourth
Counter({'foo': 'bar'})
>>> fourth.__class__.__name__
'Counter'
>>> fifth = manager.get_fixture("fifth")
>>> fifth
Counter({'toaster': 'toasted', 'foo': 'bar'})
>>> fifth.__class__.__name__
'Counter'

If your fields are dict, then the first-level key will override everything,
unless you use deep_inherit:

toaster:
 fields:
 toasts:
 toast1:
 type: brioche
 price: 10
 weight: 20

toaster2:
 inherit_from: toaster
 deep_inherit: true
 fields:
 toasts:
 toast1:
 type: bread
 # Because of deep_inherit, the following fields are implied:
 # price: 10
 # weight: 20

Example test:

from charlatan import FixturesManager

def test_deep_inherit():
 manager = FixturesManager()
 manager.load('./charlatan/tests/example/data/deep_inherit.yaml')
 toaster2 = manager.get_fixture('toaster2')
 assert toaster2['toasts']['toast1']['price'] == 10
 assert toaster2['toasts']['toast1']['weight'] == 20

New in version 0.4.5: You can use deep_inherit to trigger nested inheritance for dicts.

New in version 0.2.4: Fixtures can now inherits from other fixtures.

Having dictionaries as fixtures

If you don’t specify the model, the content of fields will be returned as
is. This is useful if you want to enter a dictionary or a list directly.

fixture_name:
 fields:
 foo: bar

fixture_list:
 fields:
 - "foo"
 - "bar"

>>> manager = FixturesManager()
>>> manager.load("docs/examples/fixtures_dict.yaml")
>>> manager.get_fixture("fixture_name")
{'foo': 'bar'}
>>> manager.get_fixture("fixture_list")
['foo', 'bar']

New in version 0.2.4: Empty models are allowed so that dict ands lists can be used as fixtures.

Getting an already existing fixture from the database

You can also get a fixture directly from the database (it uses sqlalchemy):
in this case, you just need to specify the model and an id.

toaster_already_in_db:
 id: 10
 model: Toaster

Dependencies

If a fixture depends on some side effect of another fixture, you can mark
that dependency (and, necessarily, ordering) by using the depend_on
section.

fixture1:
 fields:
 - name: "foo"

fixture2:
 depend_on:
 - fixture1
 fields:
 - name: "bar"
 post_creation:
 - some_descriptor_that_depend_on_fixture1: true

New in version 0.2.7.

Post creation

Example:

user:
 fields:
 name: Michel Audiard
 model: User
 post_creation:
 has_used_toaster: true
 # Note that rel are allowed in post_creation
 new_toaster: !rel blue_toaster

For a given fixture, post_creation lets you change some attributes after
instantiation. Here’s the pseudo-code:

instance = ObjectClass(**fields)
for k, v in post_creation:
 setattr(instance, k, v)

New in version 0.2.0: It is now possible to use rel in post_creation.

Linking to other objects

Example:

toaster:
 model: Toaster
 fields:
 color: red

user:
 model: User
 fields:
 # You can link to another fixture
 toasters:
 - !rel toaster

toaster_colors:
 # You can also link to a specific attribute
 fields:
 color: !rel toaster.color

To link to another object defined in the configuration file, use !rel. You
can link to another objet (e.g. !rel toaster) or to another object’s
attribute (e.g. !rel toaster.color).

>>> manager = FixturesManager()
>>> manager.load("docs/examples/relationships.yaml",
... models_package="charlatan.tests.fixtures.simple_models")
>>> manager.get_fixture("user").toasters
[<Toaster 'red'>]
>>> manager.get_fixture("toaster_colors")
{'color': 'red'}

You can also link to specific attributes of collection’s item (see
Collections of Fixtures for more information about collections).

toaster_colors_list:
 fields: ['red']

Let's define a collection
toasters:
 model: Toaster
 objects:
 red:
 color: red

toaster_from_collection:
 inherit_from: toaster
 fields:
 # You can link a specific attribute of a collection's item.
 color: !rel toasters.red.color

>>> manager.get_fixture("toaster_from_collection")
<Toaster 'red'>

New in version 0.2.0: It is now possible to link to another object’ attribute.

Collections of Fixtures

Charlatan also provides more efficient way to define variations of fixtures.
The basic idea is to define the model and the default fields, then use the
objects key to define related fixtures. There’s two ways to define those
fixtures in the objects key:

	Use a list. You will then be able to access those fixtures via their index,
e.g. toaster.0 for the first item.

	Use a dict. The key will be the name of the fixture, the value a dict of
fields. You can access them via their namespace: e.g. toaster.blue.

You can also install all of them by installing the name of the collection.

toasters:
 model: charlatan.tests.fixtures.simple_models:Toaster

 # Those are the default for all fixtures
 fields:
 slots: 5

 # You can have named fixtures in the collection. Note the use of dict.
 objects:
 green: # This fixture can be accessed via toaster.green
 color: green
 blue:
 color: blue

anonymous_toasters:
 inherit_from: toasters

 # Here we define unamed fixtures. Note that we use a list instead of a dict.
 objects:
 # You access the first fixture via anonymous_toaster.0
 -
 color: yellow
 -
 color: black

Those collections can be used as is in relationships.

collection:
 fields:
 # Since we defined the toasters collection as a dict, things's value will
 # be a dict as well
 things: !rel toasters

users:
 model: charlatan.tests.fixtures.simple_models:User

 objects:

 1:
 toasters: !rel anonymous_toasters

 2:
 # You can also link to specific relationships using the namespace
 toasters: [!rel toasters.green]

 3:
 toasters: [!rel anonymous_toasters.0]

Here’s how you would use this fixture file to access specific fixtures:

>>> manager = FixturesManager()
>>> manager.load("docs/examples/collection.yaml")
>>> manager.get_fixture("toasters.green")
<Toaster 'green'>
>>> manager.get_fixture("anonymous_toasters.0")
<Toaster 'yellow'>

You can also access the whole collection:

>>> pprint.pprint(manager.get_fixture("toasters"))
{'blue': <Toaster 'blue'>, 'green': <Toaster 'green'>}
>>> manager.get_fixture("anonymous_toasters")
[<Toaster 'yellow'>, <Toaster 'black'>]

Like any fixture, this collection can be linked to in a relationship using the
!rel keyword in an intuitive way.

>>> pprint.pprint(manager.get_fixture("collection"))
{'things': {'blue': <Toaster 'blue'>, 'green': <Toaster 'green'>}}
>>> user1 = manager.get_fixture("users.1")
>>> user1.toasters
[<Toaster 'yellow'>, <Toaster 'black'>]
>>> manager.get_fixture("users.2").toasters
[<Toaster 'green'>]
>>> manager.get_fixture("users.3").toasters
[<Toaster 'yellow'>]

Changed in version 0.3.4: Access to unnamed fixture by using a .{index} notation instead of
_{index}.

New in version 0.3.4: You can now have list of named fixtures.

New in version 0.2.8: It is now possible to retrieve lists of fixtures and link to them with
!rel

Loading Fixtures from Multiple Files

Loading fixtures from multiple files works similarly to loading collections. In
this case, every fixture in a single file is preceded by a namespace taken from
the name of that file. Relationships between fixtures in different files
specified using the !rel keyword may be specified by prefixing the desired
target fixture with its file namespace.

toaster:
 model: Toaster
 fields:
 color: red

user:
 model: User
 fields:
 # You can link to another fixture
 toasters:
 - !rel toaster

toaster_colors:
 # You can also link to a specific attribute
 fields:
 color: !rel toaster.color

toaster_colors_list:
 fields: ['red']

Let's define a collection
toasters:
 model: Toaster
 objects:
 red:
 color: red

toaster_from_collection:
 inherit_from: toaster
 fields:
 # You can link a specific attribute of a collection's item.
 color: !rel toasters.red.color

toaster:
 model: Toaster
 fields:
 color: !rel relationships.toaster.color

>>> manager = FixturesManager()
>>> manager.load(["docs/examples/relationships.yaml",
... "docs/examples/files.yaml"],
... models_package="charlatan.tests.fixtures.simple_models")
>>> manager.get_fixture("files.toaster")
<Toaster 'red'>

New in version 0.3.7: It is now possible to load multiple fixtures files with FixturesManager

Datetime and timestamps

Use !now, which returns timezone-aware datetime. You can use modifiers, for
instance:

	!now +1y returns the current datetime plus one year

	!now +5m returns the current datetime plus five months

	!now -10d returns the current datetime minus ten days

	!now +15M (note the case) returns the current datetime plus 15 minutes

	!now -30s returns the current datetime minus 30 seconds

For naive datetime (see the definition in Python’s datetime [https://docs.python.org/2/library/datetime.html] module documentation), use
!now_naive. It also supports deltas.

For Unix timestamps (seconds since the epoch) you can use !epoch_now:

	!epoch_now +1d returns the current datetime plus one year in seconds
since the epoch

	!epoch_now_in_ms returns the current timestamp in milliseconds

All the same time deltas work.

New in version 0.4.6: !epoch_now_in_ms was added.

New in version 0.4.4: !now_naive was added.

New in version 0.2.9: It is now possible to use times in seconds since the epoch

Unicode Strings

New in version 0.3.5.

In python 2 strings are not, by default, loaded as unicode. To load all the
strings from the yaml files as unicode strings, pass the option
use_unicode as True when you instantiate your fixture manager.

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	charlatan 0.4.6 documentation

Database fixtures

SQLAlchemy

Charlatan has been heavily used and tested with sqlalchemy. Here’s a simple
example:

Tests:

from charlatan import testing
from charlatan import FixturesManager
from charlatan.tests.fixtures.models import Session, Base, engine
from charlatan.tests.fixtures.models import Toaster

session = Session()
manager = FixturesManager(db_session=session)
manager.load("./charlatan/tests/example/data/sqlalchemy.yaml")

class TestSqlalchemyFixtures(testing.TestCase):

 def setUp(self):
 self.manager = manager

 # There's a lot of different patterns to setup and teardown the
 # database. This is the simplest possibility.
 Base.metadata.create_all(engine)

 def tearDown(self):
 Base.metadata.drop_all(engine)
 session.close()

 def test_double_install(self):
 """Verify that there's no double install."""
 self.manager.install_fixture('toaster')

 toaster = session.query(Toaster).one()
 assert toaster.color.name == 'red'

YAML file:

toaster:
 fields:
 color: !rel color
 name: "toaster1"
 model: charlatan.tests.fixtures.models:Toaster

color:
 fields:
 name: "red"
 model: charlatan.tests.fixtures.models:Color

Model definition:

from sqlalchemy import create_engine
from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
engine = create_engine('sqlite:///:memory:')
Session = sessionmaker(bind=engine)

class Toaster(Base):

 __tablename__ = "toasters"

 id = Column(Integer, primary_key=True)
 name = Column(String)
 color_id = Column(String, ForeignKey('colors.name'))

 color = relationship("Color", backref='toasters')

class Color(Base):

 __tablename__ = "colors"

 id = Column(Integer, primary_key=True)
 name = Column(String)

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	charlatan 0.4.6 documentation

Hooks

The following hooks are available:

	before_install: called before doing anything. The callback takes no
argument.

	before_save: called before saving an instance using the SQLAlchemy
session. The callback takes a single argument which is the instance being
saved.

	after_save: called after saving an instance using the SQLAlchemy session.
The callback takes a single argument which is the instance that was saved.

	after_install: called after doing anything. The callback must accept a
single argument that will be the exception that may have been raised during
the whole process. This function is guaranteed to be called.

	before_uninstall: called before uninstalling fixtures. The callback takes
no argument.

	before_delete: called before deleting an instance using either the
SQLAlchemy session or in the following order delete_instance and delete.
The callback takes a single argument which is the instance being deleted.

	after_delete: called after deleting an instance using either the
SQLAlchemy session or in the following order delete_instance and delete.
The callback takes a single argument which is the instance that was deleted.

	after_uninstall: called after uninstalling fixtures. The callback must
accept a single argument that will be the exception that may have been raised
during the whole process. This function is guaranteed to be called.

	
FixturesManager.set_hook(hookname, func)

	Add a hook.

	Parameters:	
	hookname (str) –

	func (function) –

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	charlatan 0.4.6 documentation

Builders

Builders provide a powerful way to customize getting fixture. You can define
your own builders and provide them as arguments when you instantiate
charlatan.FixturesManager.

Example

Here’s an example inspired by the schematics library, which expects a dict of
attributes as a single instantiation argument:

from charlatan import FixturesManager
from charlatan.builder import Builder

class Toaster(object):

 def __init__(self, attrs):
 self.slots = attrs['slots']

class DictBuilder(Builder):

 def __call__(self, fixtures, klass, params, **kwargs):
 # A "normal" object would be instantiated this way:
 # return klass(**params)

 # Yet schematics object expect a dict of attributes as only argument.
 # So we'll do:
 return klass(params)

def test_custom_builder():
 manager = FixturesManager(get_builder=DictBuilder())
 manager.load('./charlatan/tests/example/data/custom_builder.yaml')
 assert manager.get_fixture('toaster').slots == 3

YAML file:

toaster:
 model: charlatan.tests.example.test_custom_builder:Toaster
 fields:
 slots: 3
 color: blue

API

	
class charlatan.builder.Builder

	
	
__call__(fixtures, klass, params, **kwargs)

	Build a fixture.

	Parameters:	
	fixtures (FixturesManager) –

	klass – the fixture’s class (model in the definition file)

	params – the fixture’s params (fields in the definition
file)

	kwargs (dict) –

kwargs allows passing arguments to the builder to change its
behavior.

	
class charlatan.builder.DeleteAndCommit

	
	
__call__(fixtures, instance, **kwargs)

	

	
delete(instance, session)

	Delete instance.

	
class charlatan.builder.InstantiateAndSave

	
	
__call__(fixtures, klass, params, **kwargs)

	Save a fixture instance.

If it’s a SQLAlchemy model, it will be added to the session and
the session will be committed.

Otherwise, a save() method will be run if the instance has
one. If it does not have one, nothing will happen.

Before and after the process, the before_save() and
after_save() hook are run.

	
instantiate(klass, params)

	Return instantiated instance.

	
save(instance, fixtures, session)

	Save instance.

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	charlatan 0.4.6 documentation

API Reference

FixturesManager

	
class charlatan.FixturesManager(db_session=None, use_unicode=False, get_builder=None, delete_builder=None)

	Manage Fixture objects.

	Parameters:	
	db_session (Session) – sqlalchemy Session object

	use_unicode (bool) –

	get_builder (func) –

	delete_builder (func) –

New in version 0.4.0: get_builder and delete_builder arguments were added.

Deprecated since version 0.4.0: delete_instance, save_instance methods were deleted in favor
of using builders.

New in version 0.3.0: db_session argument was added.

	
clean_cache()

	Clean the cache.

	
delete_fixture(fixture_key, builder=None)

	Delete a fixture instance.

	Parameters:	
	fixture_key (str) –

	builder (func) –

Before and after the process, the before_delete() and
after_delete() hook are run.

New in version 0.4.0: builder argument was added.

Deprecated since version 0.4.0: delete_instance method renamed to delete_fixture for
consistency reason.

	
get_all_fixtures(builder=None)

	Get all fixtures.

	Parameters:	fixture_keys (iterable) –

	Return type:	list of instantiated but unsaved fixtures

New in version 0.4.0: builder argument was added.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
get_fixture(fixture_key, overrides=None, builder=None)

	Return a fixture instance (but do not save it).

	Parameters:	
	fixture_key (str) –

	overrides (dict) – override fields

	builder (func) – build builder.

	Return type:	instantiated but unsaved fixture

New in version 0.4.0: builder argument was added.
attrs argument renamed overrides.

Deprecated since version 0.4.0: do_not_save argument was removed.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
get_fixtures(fixture_keys, builder=None)

	Get fixtures from iterable.

	Parameters:	fixture_keys (iterable) –

	Return type:	list of instantiated but unsaved fixtures

New in version 0.4.0: builder argument was added.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
get_hook(hook_name)

	Return a hook.

	Parameters:	hook_name (str) – e.g. before_delete.

	
install_all_fixtures()

	Install all fixtures.

	Return type:	list of fixture_instance

Deprecated since version 0.4.0: do_not_save argument was removed.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
install_fixture(fixture_key, overrides=None)

	Install a fixture.

	Parameters:	
	fixture_key (str) –

	overrides (dict) – override fields

	Return type:	fixture_instance

Deprecated since version 0.4.0: do_not_save argument was removed.
attrs argument renamed overrides.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
install_fixtures(fixture_keys)

	Install a list of fixtures.

	Parameters:	fixture_keys (str or list of strs) – fixtures to be installed

	Return type:	list of fixture_instance

Deprecated since version 0.4.0: do_not_save argument was removed.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
keys()

	Return all fixture keys.

	
load(filenames, models_package='')

	Pre-load the fixtures. Does not install anything.

	Parameters:	
	filename (list_or_str) – file or list of files that holds the
fixture data

	models_package (str) – package holding the models definition

Deprecated since version 0.3.0: db_session argument was removed and put in the object’s
constructor arguments.

Changed in version 0.3.7: filename argument was changed to filenames, which can be
list or string.

	
set_hook(hookname, func)

	Add a hook.

	Parameters:	
	hookname (str) –

	func (function) –

	
uninstall_all_fixtures()

	Uninstall all installed fixtures.

	Return type:	None

Deprecated since version 0.4.0: do_not_delete argument was removed. This function does not
return anything.

	
uninstall_fixture(fixture_key)

	Uninstall a fixture.

	Parameters:	fixture_key (str) –

	Return type:	None

Deprecated since version 0.4.0: do_not_delete argument was removed. This function does not
return anything.

	
uninstall_fixtures(fixture_keys)

	Uninstall a list of installed fixtures.

	Parameters:	fixture_keys (str or list of strs) – fixtures to be uninstalled

	Return type:	None

Deprecated since version 0.4.0: do_not_delete argument was removed. This function does not
return anything.

FixturesManagerMixin

	
class charlatan.FixturesManagerMixin

	Class from which test cases should inherit to use fixtures.

Changed in version 0.3.12: FixturesManagerMixin does not install class attributes
fixtures anymore.

Changed in version 0.3.0: use_fixtures_manager method renamed init_fixtures.

Changed in version 0.3.0: Extensive change to the function signatures.

	
get_fixture(*args, **kwargs)

	Return a fixture instance (but do not save it).

	Parameters:	
	fixture_key (str) –

	overrides (dict) – override fields

	builder (func) – build builder.

	Return type:	instantiated but unsaved fixture

New in version 0.4.0: builder argument was added.
attrs argument renamed overrides.

Deprecated since version 0.4.0: do_not_save argument was removed.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
get_fixtures(*args, **kwargs)

	Get fixtures from iterable.

	Parameters:	fixture_keys (iterable) –

	Return type:	list of instantiated but unsaved fixtures

New in version 0.4.0: builder argument was added.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
init_fixtures()

	Initialize the fixtures.

This function must be called before doing anything else.

	
install_all_fixtures(*args, **kwargs)

	Install all fixtures.

	Return type:	list of fixture_instance

Deprecated since version 0.4.0: do_not_save argument was removed.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
install_fixture(*args, **kwargs)

	Install a fixture.

	Parameters:	
	fixture_key (str) –

	overrides (dict) – override fields

	Return type:	fixture_instance

Deprecated since version 0.4.0: do_not_save argument was removed.
attrs argument renamed overrides.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
install_fixtures(*args, **kwargs)

	Install a list of fixtures.

	Parameters:	fixture_keys (str or list of strs) – fixtures to be installed

	Return type:	list of fixture_instance

Deprecated since version 0.4.0: do_not_save argument was removed.

Deprecated since version 0.3.7: include_relationships argument was removed.

	
uninstall_all_fixtures(*args, **kwargs)

	Uninstall all installed fixtures.

	Return type:	None

Deprecated since version 0.4.0: do_not_delete argument was removed. This function does not
return anything.

	
uninstall_fixture(*args, **kwargs)

	Uninstall a fixture.

	Parameters:	fixture_key (str) –

	Return type:	None

Deprecated since version 0.4.0: do_not_delete argument was removed. This function does not
return anything.

	
uninstall_fixtures(*args, **kwargs)

	Uninstall a list of installed fixtures.

	Parameters:	fixture_keys (str or list of strs) – fixtures to be uninstalled

	Return type:	None

Deprecated since version 0.4.0: do_not_delete argument was removed. This function does not
return anything.

Fixture

	
class charlatan.Fixture(key, fixture_manager, model=None, fields=None, inherit_from=None, deep_inherit=False, post_creation=None, id_=None, models_package='', depend_on=frozenset([]))

	Represent a fixture that can be installed.

	
static extract_rel_name(name)

	Return the relationship and attr from an argument to !rel.

	
extract_relationships()

	Return all dependencies.

	Rtype generator:

		

Yields (depends_on, attr_name).

	
get_class()

	Return class object for this instance.

	
get_instance(path=None, overrides=None, builder=None)

	Instantiate the fixture using the model and return the instance.

	Parameters:	
	path (str) – remaining path to return

	overrides (dict) – overriding fields

	builder (func) – function that is used to get the fixture

Deprecated since version 0.4.0: fields argument renamed overrides.

New in version 0.4.0: builder argument added.

Deprecated since version 0.3.7: include_relationships argument removed.

	
get_relationship(name)

	Get a relationship and its attribute if necessary.

Utils

	
charlatan.utils.copy_docstring_from(klass)

	Copy docstring from another class, using the same function name.

	
charlatan.utils.datetime_to_epoch_in_ms(a_datetime)

	Return the epoch timestamp for the given datetime.

	Parameters:	a_datetime (datetime) – The datetime to translate

	Return type:	int

>>> a_datetime = datetime.datetime(2013, 11, 21, 1, 33, 11, 160611)
>>> datetime_to_epoch_timestamp(a_datetime)
1384997591.160611
>>> datetime_to_epoch_in_ms(a_datetime)
1384997591161

	
charlatan.utils.datetime_to_epoch_timestamp(a_datetime)

	Return the epoch timestamp for the given datetime.

	Parameters:	a_datetime (datetime) – The datetime to translate

	Return type:	float

>>> a_datetime = datetime.datetime(2013, 11, 21, 1, 33, 11, 160611)
>>> datetime_to_epoch_timestamp(a_datetime)
1384997591.160611

	
charlatan.utils.deep_update(source, overrides)

	Update a nested dictionary or similar mapping.

Modify source in place.

	
charlatan.utils.extended_timedelta(**kwargs)

	Return a timedelta object based on the arguments.

	Parameters:	
	years (integer) –

	months (integer) –

	days (integer) –

	Return type:	timedelta instance

Since timedelta‘s largest unit are days, timedelta
objects cannot be created with a number of months or years as an argument.
This function lets you create timedelta objects based on a
number of days, months and years.

>>> extended_timedelta(months=1)
datetime.timedelta(30)
>>> extended_timedelta(years=1)
datetime.timedelta(365)
>>> extended_timedelta(days=1, months=1, years=1)
datetime.timedelta(396)
>>> extended_timedelta(hours=1)
datetime.timedelta(0, 3600)

	
charlatan.utils.get_timedelta(delta)

	Return timedelta from string.

	Parameters:	delta (str) –

	Return type:	datetime.timedelta instance

>>> get_timedelta("")
datetime.timedelta(0)
>>> get_timedelta("+1h")
datetime.timedelta(0, 3600)
>>> get_timedelta("+10h")
datetime.timedelta(0, 36000)
>>> get_timedelta("-10d")
datetime.timedelta(-10)
>>> get_timedelta("+1m")
datetime.timedelta(30)
>>> get_timedelta("-1y")
datetime.timedelta(-365)
>>> get_timedelta("+10d2h")
datetime.timedelta(10, 7200)
>>> get_timedelta("-10d2h")
datetime.timedelta(-11, 79200)
>>> get_timedelta("-21y2m1d24h")
datetime.timedelta(-7727)
>>> get_timedelta("+5M")
datetime.timedelta(0, 300)

	
charlatan.utils.is_sqlalchemy_model(instance)

	Return True if instance is an SQLAlchemy model instance.

	
charlatan.utils.richgetter(obj, path)

	Return a attrgetter + item getter.

	
charlatan.utils.safe_iteritems(items)

	Safely iterate over a dict or a list.

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	charlatan 0.4.6 documentation

Contributing

Install the requirements:

$ make bootstrap

Run the tests:

$ make test

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	charlatan 0.4.6 documentation

Changelog for Charlatan

0.4.6 (2015-09-22)

	Add support for epoch_now_in_ms (thanks to @chunyan)

0.4.5 (2015-05-29)

	Add deep_inherit to allow nested inheritance of fields.

0.4.4 (2015-05-28)

	Added !now_naive YAML file command to return naive datetime.

0.4.3 (2015-05-26)

	Fixed anonymous list objects name resolution (thanks to @jvrsantacruz)

0.4.2 (2015-05-19)

	Breaking change: the !now YAML command now returns timezone-aware
datetime by default. You can change that behavior by changing
charlatan.file_format.TIMEZONE_AWARE.

	Fixed bug where uninstalling a sqlalchemy fixture would not commit the delete
to the session.

	Fixed bug where dict fixtures could not reference fields from other collections of dicts.

0.4.1 (2015-02-26)

	Fixed bug where !rel a_database_model.id, where id is a primary key
generated by the database, would be None because of how fixtures are
cached.

	Removed as_list and as_dict feature. It was unnecessarily complex and
would not play well with caching fixtures.

0.4.0 (2015-02-18)

	Breaking change: get_builder and delete_builder arguments were
added to charlatan.FixturesManager.

	Breaking change: delete_instance, save_instance methods were
deleted in favor of using builders (see below).

	Breaking change: fields argument on
charlatan.fixture.Fixture and fixtures collection class has
been renamed overrides for consistency reasons.

	Breaking change: attrs argument on
charlatan.FixturesManager been renamed overrides for
consistency reasons.

	Breaking change: deleting fixtures will not return anything. It used to
return the fixture or list of fixtures that were successfully deleted. It has
been removed to apply the command query separation pattern. There are other
ways to check which fixtures are installed, and hooks or builders can be used
to customize deletion.

	Breaking change: do_not_save and do_not_delete arguments have
been removed from all functions, in favor of using builders.

	The notion of charlatan.builder.Builder was added. This allows
customizing how fixtures are instantiated and installed. A builder
argument has been added to most method dealing with getting, installing or
deleting fixtures. Sane defaults have been added in most places.

	Improve documentation about using pytest with charlatan.

	Fix bug preventing being able to load multiple fixtures file.

0.3.12 (2015-01-14)

	Do not install the class’ fixtures variable on
charlatan.FixturesManagerMixin initialization. This can lead to
bad pattern where a huge list of fixtures is installed for each test, even
though each test uses only a few. Also, it’s safer to be explicit about this
behavior and let the user have this automatic installation. Note that you can
easily reimplement this behavior by subclassing or installing those in the
class setUp method.

0.3.11 (2015-01-06)

	Fix getting relationships with fields that are nested more than one level

0.3.10 (2014-12-31)

	Get utcnow at fixture instantiation time, to allow using freezegun
intuitively

0.3.9 (2014-11-13)

	Fix saving collection of fixtures to database (thanks to @joegilley)

0.3.8 (2014-08-19)

	Support loading of globbed filenames

0.3.7 (2014-07-07)

	Support loading of multiple fixtures files

	Remove include_relationships option in instance creation

0.3.6 (2014-06-02)

	Update PYYaml

0.3.5 (2014-06-02)

	Support loading all strings as unicode

0.3.4 (2014-01-21)

	Fix getting attribute from relationships

0.3.3 (2014-01-18)

	Add support for Python 3

0.3.2 (2014-01-16)

	Add ability to uninstall fixtures (thanks to @JordanB)

0.3.1 (2014-01-10)

	Numerous tests added, a lot of cleanup.

	Clarification in documentation.

	Remove load, set_hook and install_all_fixtures shortcuts from
charlatan package.

	Remove FIXTURES_MANAGER singleton. Remove charlatan.fixtures_manager
shortcut.

	Remove db_session argument to FixturesManager.load.

	Add db_session argument to FixturesManager constructor.

	Remove charlatan.fixtures_manager.FixturesMixin. Replaced by
charlatan.testcase.FixturesManagerMixin.

	FixturesManagerMixin now exposes pretty much the same method as
FixturesManager.

	FixturesManagerMixin‘s use_fixtures_manager was renamed
init_fixtures.

0.2.9 (2013-11-20)

	Add !epoch_now for Unix timestamps (thanks to @erikformella)

0.2.8 (2013-11-12)

	Add ability to point to a list fixture (thanks to @erikformella)

0.2.7 (2013-10-24)

	Add ability to define dependencies outside of fields through the depend_on
key in the yaml file (thanks to @Roguelazer)

0.2.6 (2013-09-06)

	Fix regression that broke API. install_fixture started returning the fixture
as well as its name. (thanks to @erikformella)

0.2.5 (2013-09-06)

	Allow relationships to be used in dicts and lists. (thanks to @erikformella)

	Allow for seconds and minutes in relative timestamps (thanks to @kmnovak)

0.2.4 (2013-08-08)

	Empty models are allowed so that dict ands lists can be used as fixtures.

	Fixtures can now inherits from other fixtures.

0.2.3 (2013-06-28)

	Added ability to link to a relationship’s attribute in YAML file.

	Added ability to use !rel in post_creation.

0.1.2 (2013-04-01)

	Started tracking changes

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	charlatan 0.4.6 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 charlatan	

 	
 	
 charlatan.builder	

 	
 	
 charlatan.utils	

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	charlatan 0.4.6 documentation

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | R
 | S
 | U

_

 	

 	__call__() (charlatan.builder.Builder method)

 	

 	(charlatan.builder.DeleteAndCommit method)

 	(charlatan.builder.InstantiateAndSave method)

B

 	

 	Builder (class in charlatan.builder)

C

 	

 	charlatan.builder (module)

 	charlatan.utils (module)

 	

 	clean_cache() (charlatan.FixturesManager method)

 	copy_docstring_from() (in module charlatan.utils)

D

 	

 	datetime_to_epoch_in_ms() (in module charlatan.utils)

 	datetime_to_epoch_timestamp() (in module charlatan.utils)

 	deep_update() (in module charlatan.utils)

 	

 	delete() (charlatan.builder.DeleteAndCommit method)

 	delete_fixture() (charlatan.FixturesManager method)

 	DeleteAndCommit (class in charlatan.builder)

E

 	

 	extended_timedelta() (in module charlatan.utils)

 	extract_rel_name() (charlatan.Fixture static method)

 	

 	extract_relationships() (charlatan.Fixture method)

F

 	

 	Fixture (class in charlatan)

 	FixturesManager (class in charlatan)

 	

 	FixturesManagerMixin (class in charlatan)

G

 	

 	get_all_fixtures() (charlatan.FixturesManager method)

 	get_class() (charlatan.Fixture method)

 	get_fixture() (charlatan.FixturesManager method)

 	

 	(charlatan.FixturesManagerMixin method)

 	get_fixtures() (charlatan.FixturesManager method)

 	

 	(charlatan.FixturesManagerMixin method)

 	

 	get_hook() (charlatan.FixturesManager method)

 	get_instance() (charlatan.Fixture method)

 	get_relationship() (charlatan.Fixture method)

 	get_timedelta() (in module charlatan.utils)

I

 	

 	init_fixtures() (charlatan.FixturesManagerMixin method)

 	install_all_fixtures() (charlatan.FixturesManager method)

 	

 	(charlatan.FixturesManagerMixin method)

 	install_fixture() (charlatan.FixturesManager method)

 	

 	(charlatan.FixturesManagerMixin method)

 	install_fixtures() (charlatan.FixturesManager method)

 	

 	(charlatan.FixturesManagerMixin method)

 	

 	instantiate() (charlatan.builder.InstantiateAndSave method)

 	InstantiateAndSave (class in charlatan.builder)

 	is_sqlalchemy_model() (in module charlatan.utils)

K

 	

 	keys() (charlatan.FixturesManager method)

L

 	

 	load() (charlatan.FixturesManager method)

R

 	

 	richgetter() (in module charlatan.utils)

S

 	

 	safe_iteritems() (in module charlatan.utils)

 	save() (charlatan.builder.InstantiateAndSave method)

 	

 	set_hook() (charlatan.FixturesManager method)

U

 	

 	uninstall_all_fixtures() (charlatan.FixturesManager method)

 	

 	(charlatan.FixturesManagerMixin method)

 	uninstall_fixture() (charlatan.FixturesManager method)

 	

 	(charlatan.FixturesManagerMixin method)

 	

 	uninstall_fixtures() (charlatan.FixturesManager method)

 	

 	(charlatan.FixturesManagerMixin method)

 Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment.png

_static/comment-close.png

_static/up.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		charlatan 0.4.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Charles-Axel Dein (Uber).
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

